Formation of the Radical Cation $N_2H_6^{+}$ in Irradiated Hydrazinium Sulphate $(N_2H_6^{2+}SO_4^{2-})$: an Electron Spin Resonance Study

Nader Ganghi, Jane L. Wyatt and Martyn C. R. Symons

Department of Chemistry, The University, Leicester LE1 7RH, U.K.

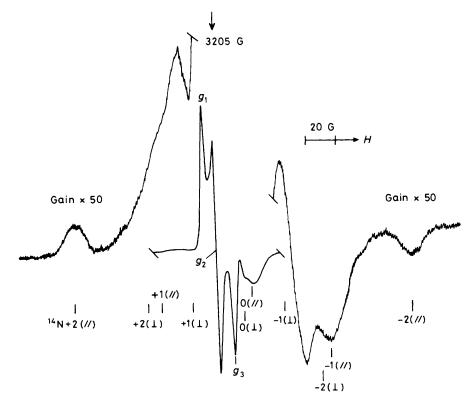
Exposure of $[N_2H_6^{2+}SO_4^{2-}]$ at 77 K to ⁶⁰Co γ -rays gave $SO_4^{,-}$ radicals and a novel species with two equivalent nitrogen nuclei and six equivalent protons, thought to be $N_2H_6^{,+}$ formed by electron capture; these species readily gave $NH_3^{,+}$ radicals on annealing.

Radicals commonly labelled ' σ^* ' after the nature of their SOMOs¹ are of great importance in the chemistry of second and subsequent row elements such as P, As, S, Se, Cl, Br, and I. For example, P_2R_6 '+ 'dimers' are formed when PR_3 '+ cations react with PR_3 ,^{2,3} but they can also be formed by electron addition to compounds containing P–P bonds. Their structures are crudely represented as (σ)², (σ^*)¹ and they are often remarkably stable.

In marked contrast, most attempts to prepare first row analogues have failed. For example, R_3N^{*+} cations do not react according to $(1)^4$ and R_2O^{*+} cations do not give

$$\mathbf{R}_{3}\mathbf{N}^{+} + \mathbf{R}_{3}\mathbf{N} \rightarrow \mathbf{R}_{3}\mathbf{N}^{+}\mathbf{N}\mathbf{R}_{3}^{+} \tag{1}$$

 R_2O - OR_2 ⁺ cations,⁵ in marked contrast with the behaviour of R_2S^{++} cations.^{6—8} In fact, the only N–N σ^* radicals that we know of are those with structures that are restrained by ring



(1)

systems, the best known being the cation (1).^{9,10} These species formed by electron loss from the neutral molecules are not strictly σ^* radicals since the N · · · N separation is large, and the question of direct bonding is ambiguous.

Following our failure to detect reaction (1),⁴ we turned to electron addition as a possible route, and selected the di-cation N₂H₆²⁺ as a potential reactant.

Exposure of the powdered solid, $N_2H_6^{2+}SO_4^{2-}$ to ⁶⁰Co γ -rays at 77 K resulted in an intense e.s.r. spectrum comprising well known features for SO₄⁺⁻ radicals, together with a novel set of features assigned to an electron-gain centre (α). The spectrum for (α) can be analysed in terms of two equivalent nitrogen nuclei and six equivalent protons with the expected marked anisotropy. The complex spectrum was simplified by using N₂D₆²⁺SO₄²⁻, as shown in Figure 1. This suggests that it is the N₂H₆⁺ σ^* cation. Strongly supporting this assignment is the fact that, since SO₄⁺⁻ radicals are present in relatively high concentration, (α) is almost certainly an electron-gain centre. Also, on annealing, (α) decomposes irreversibly to give NH₃⁺⁺ radicals, reaction (2). Reaction (2), which is the reverse of (1), is expected to occur thermally, since reaction (1) appears not to occur. The e.s.r. spectra for NH₃⁺⁺ were

Figure 1. First derivative X-band e.s.r. spectrum for $N_2D_6^{2+}SO_4^{2-}$ after exposure of the powder to ⁶⁰Co γ -rays at 77 K, showing central features (g_1,g_2,g_3) assigned to SO_4^{*-} radicals, together with features assigned to $N_2D_6^{*+}$ cations. A good computer simulation was obtained for this spectrum using the parameters given in the text. (1 G = 10^{-4} T.)

$$N_2H_6^{\cdot +} \rightarrow NH_3 + NH_3^{\cdot +}$$
(2)

quite characteristic of this well known radical, and its identification is assumed to be correct.

If (α) is N₂H₆⁺⁺, then analysis of the e.s.r. data in the usual way gives $A_{\parallel}(^{14}N) = 56$, $A_{\perp}(^{14}N) = 30$ G, whence $A_{iso} \approx 39$ and $2B \approx 17$, assuming positive signs. These give ca. 7% 2s-character and 52% 2p-character on each nitrogen. The high total spin-density suggests that $A(^{1}H)$ is negative (≈ -14 G). [$A(^{2}H)$ was poorly resolved, giving ≈ 2.2 G.] The p:s ratio of ca. 7.5 shows that the two -NH₃ units must be nearly planar, and this accords with the relatively large magnitude of the (negative) proton coupling. The structure accords with the ease of dissociation (2), and with the reluctance of reaction (1) to occur, and the contrast with P_2H_6 ⁺⁺ and P_2R_6 ⁺⁺ cations is marked, since here, the normal pyramidal character is retained at the two -PR₃ units.

Received, 22nd May 1986; Com. 694

References

- 1 M. C. R. Symons, Pure Appl. Chem., 1981, 53, 223.
- 2 A. Begum, A. R. Lyons, and M. C. R. Symons, J. Chem. Soc. A, 1971, 2290.
- 3 A. Hasegawa, G. D. G. McConnachie, and M. C. R. Symons, J. Chem. Soc., Faraday Trans. 1, 1984, 80, 1005.
- 4 G. W. Eastland, D. N. R. Rao, and M. C. R. Symons, J. Chem. Soc., Perkin Trans. 2, 1984, 1551.
- 5 M. C. R. Symons and B. W. Wren, J. Chem. Soc., Perkin Trans. 2, 1984, 511.
- 6 B. C. Gilbert, D. K. C. Hodgeman, and R. O. C. Norman, J. Chem. Soc., Perkin Trans. 2, 1973, 1748.
- 7 K. D. Asmus, Acc. Chem. Res., 1979, 12, 436.
- 8 D. N. R. Rao, M. C. R. Symons, and B. W. Wren, J. Chem. Soc., Perkin Trans. 2, 1984, 1681.
- 9 T. M. McKinney and D. H. Geske, J. Am. Chem. Soc., 1965, 87, 3013.
- 10 G. W. Eastland and M. C. R. Symons, Chem. Phys. Lett., 1977, 45, 422.